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We have developed a symbolic manipulation program and program generator (tensor contraction engine or
TCE) that abstracts and automates the time-consuming, error-prone processes of deriving the working equations
of a well-defined model of second-quantized many-electron theories and synthesizing efficient parallel computer
programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs
valid contractions of creation and annihilation operators according to Wick’s theorem, consolidates identical
terms, and reduces the expressions into the form of multiple tensor contractions acted upon by permutation
operators. It subsequently determines the binary contraction order for each multiple tensor contraction with
the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors),
and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and
index permutations is translated into an optimized program that is combined with the NWCHEM and UTCHEM
computational chemistry software packages. The programs synthesized by TCE take advantage of spin
symmetry (within the spifrorbital formalisms), real Abelian point-group symmetry, and index permutation
symmetry at every stage of the calculations to minimize the number of arithmetic operations and storage
requirement, adjust the peak local memory usage by index-range tiling, and support parallel 1/0 interfaces
and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic
derivation and implementation of parallel programs for a range of predictive computational methods
configuration-interaction theory (CISD, CISDT, CISDTQ), generalized many-body perturbation theory [MBPT-
(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and
CCSDTQ), some for the first timeand discuss the performance of the implemented programs.

1. Introduction sophistication have been develoged. A pioneering and

Electronic computers have enabled a complex sequence ofperhaps the most thorough study was conducted by Janssen and

arithmetic operations in quantum mechanical calculations of Schaefef, who built a computer program that automated the
P q - derivation and computer implementation of coupled-cluster
many-electron systems. Equally complex are the symbolic

’ ; L2 . . models for open-shell systems. There have also been some
manipulation processes of deriving the working equations of - : . . .
; ) . 2 studies that aimed at performing calculations of various many-
many-electron theories and implementing efficient computer

. ) . - electron theory models in a single algorithmic framework,
programs on the basis of these equations, which are also subjec . = :
. ; - sometimes at the expense of efficiency. The prime examples
to abstraction and automation by computers. The objective of

this study is to develop a general-purpose computer program Z::Z(iifrgggﬁg&?iﬁgge@gﬂz}grﬁz rr:rig)rll-(gg(ljeysptﬁrztlﬂogjstleodn
that performs both symbolic manipulation processaprogram P 9

. . - eneral-order coupled-cluster theory ofllagt and Surja.13
that .manlpula.tes second-quantlged operators and. derives th#hese and the congputer-aided formL}J/Ia derﬁ/ation ané program
working equations of any well-defined second-quantized many-

electron theory, analyzes these equations, and translates therﬁynthesiS are closely related in the sense that both approaches
into a thoroughly optimized parallel program. The significance require a high d_e_gree of abstraction of th_e equations and
of such a program is evident. (1) It expedites time-consuming constituent quantities of many-elgctron theoﬁ‘é"s.
and error-prone derivation and computer implementation of ~We have d.eveloped a symbolic manipulation program of
various many-electron theory models, (2) it facilitates parallel- Second-quantized operators gnd a program generator, WhICh we
ization and other laborious optimization of synthesized pro- Ccall a tensor contraction engine or T¢Eadopting the design
grams, which may be tailored to a particular computer archi- Philosophy of Janssen and Schaefer. TCE inherits various
tecture, (3) it enhances the portability, maintainability, and techniques invented by these and other authérs}®14but its
extensibility of synthesized programs, and (4) it helps design applicability is broadened and its capabilities in equation analysis
and test a new many-electron theory model or implements and program optimization are significantly enhanced to the
models that are too complex to be hand-coded. extent that the computer-synthesized programs can compete with
A number of researchers have capitalized on computer-aidedhand-coded programs in terms of operation and memory cost.
formula derivation and program synthesis in the past, and some TCE is based on the second-quantized representation of many-
symbolic manipulation programs with a varied degree of electron theories, which is general and covers a wide spectrum
of models ranging from configuration-interaction (CI) theory,
*E-mail: so.hirata@pnl.gov. many-body perturbation theory (MBPT), and coupled-cluster
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(CC) theory!6-19 Given a definition of a many-electron theory The process of evaluating operator expectation values with
as the quasi-vacuum expectation values of normal-orderedsecond quantization can be significantly simplified and acceler-
second-quantized operators, TCE performs valid contractionsated by Wick’s theorem, which states that a string of creation
of creation and annihilation operators according to Wick’s and annihilation operators is a sum of all possible partial
theorem, consolidates identical terms, and reduces the expreseontractions of the string in the normal order. A normal-ordered
sions into the form of multiple tensor contractions acted upon string of operators (enclosed by a pair of braces) relative to a
by permutation operators. TCE subsequently performs strengthquasi-vacuum is defined as the rearrangement of the operators
reduction (determines the binary contraction order for each such that all hole annihilation and particle creation operators
multiple tensor contraction that has the minimal operation and are to the left of all hole creation and particle annihilation
memory cost), factorization (eliminates common binary contrac- operators. The significance of Wick’s theorem is that the quasi-
tions and defines intermediate tensors), and common subex-vacuum expectation value of a normal-ordered string of opera-
pression elimination (intermediate reuse). The resulting orderedtors vanishes unless it is fully contracted.
list (“operation tree”) of binary tensor contractions, additions,  An initial task of TCE (an interpreted, interactive, object-
and index permutations is translated into an optimized program oriented program written in Python programming language) is
that is combined with a high-performance quantum chemistry therefore to perform all valid contractions of second-quantized
program package tailored to parallel computer environments. operators, provided a definition of a many-electron theory model
The programs synthesized by TCE take advantage of spin,is expressed in terms of quasi-vacuum expectation values of a
spatial, and index permutation symmetries at every stage of theproduct of normal-ordered strings of operators, such as
calculations to reduce the operation cost and storage require-
ment, adjust the peak local memory usage by index-range tiling, + 28 Sigitﬁiﬁ’ﬁf}ﬁiiﬁiiml {h*h PP} {g geggg7} {p;pIOhlzhl 3
and support multiple parallel 1/0 interfaces and dynamic load
balancing for parallel executions. {pISpT14h16h15}| 00(1)
In this article, we describe the machinery of TCE and discuss
the characteristics of the equations and intermediate quantitieswhich is a part of the CCSD, amplitude equation. Heré,
of many-electron theories upon which TCE is based. To render denotes a hole indexi, denotes a particle index, denotes
TCE widely applicable and to advance its program optimization either a hole or a particle |nde>ug*"ge represents an anti-
capabilities, we answer the following questions: (1) What are symmetrized two-electron mtegral[;13p714 represents an excita-
the adequate representations of tensors, second-quantized opertion amplitude, and the Einstein convention of implied sum-
tors, permutation operators, and so forth that permit rapid mation is employed. A valid contraction is the one between a
pattern-matching operations? (2) What is the rational definition hole creation and a hole annihilation operator and between a
of intermediate tensors that have desirable index permutationparticle annihilation and a particle creation operator across
symmetry? (3) How can we take advantage of spin, spatial, anddifferent normal-ordered strings (i.e., excluding internal contrac-
index permutation symmetries simultaneously to minimize the tions). TCE performs this procedure iteratively, with each cycle
number of arithmetic operations? (4) How can we adjust the of iteration consisting of the following steps. First, TCE
peak memory usage without significantly increasing the opera- performs all possible contractions of an operator. Because the
tion cost? (5) What is the universal storage scheme for tensorsorder of contraction is immaterial, TCE elects to contract the
compressed by the use of spin, spatial, and index permutationleftmost operator with another operator. After a single contrac-
symmetries? (6) How can we effectively parallelize the entire tion of the leftmost operator, eq 1 becomes
calculation? We demonstrate the computer-aided implementation
of high-performance parallel programs for various models of —
many-electron theories that include configuration-interaction
theory (CISD, CISDT, CISDTQ), many-body perturbation {plaplh,ch,} 100
theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster 1
oY (E5CD: CCD. LECSD. CCSD, QCISD, CCSOT. and. 1oy gt L S DI apipe) (050806} (popichizhs )
{p1aP1snigis} 100

petobio thibiarp £ hy L0403} 05 9697}{ pgplohlzhn}

8971 11h12 Myhie

2. Machinery of Tensor Contraction Engine

2.1. Derivation of Working Equations. The vast majority 1 g SeetPsPiogPisPrar) ht
of modern many-electron theories for electron correlation 128 97 uafl Musfue { p4p3}{g 969897}{p9p10 )
problems are defined in terms of the expectation values of the {p13p14h16h15} |00

nonrelativistic electronic Hamiltonian and other operators for

wave functions expanded by Slater determinants. The expecta-, _+_ 1 gsgetpe)PlotplsPM[(Dl {h D03} {g g 9s0-} {prT !

tion values, in their simplest forms, are usually tensor algebraic = 128 0705 Mo M 4 OV LFOFI0L
expressions in which the tensors represent certain physical {prthGhls}IOD
interactionst* Therefore, the derivation of working equations 1

amounts to evaluating the expectation values of operators for _ 1/9595¢PoP10 {P13D1e Tl
determinantal wave fSnctionspand reducing the resFl)JIting alge- 128 CrENRS (DI h2P.p:}{ 05060607 H PEPicfay )
braic expressions into the simplest form of tensor contractions {p13p14h15} |00
and additions. This may be accomplished in various ways, L

but three widely used approaches are the one based on Slater’ 2/9596¢PoP10 {PraP1s ™

rules, the methtgd of secrz)%d quantization, and the dlagrammat|c§r128 gein g O 2p.psH 05060607} PoPachiz)
approach. TCE adopts the method of second quantization that 13p14 h,¢ 100 (2)
appears to blend the applicability and expediency in the most

adequate balance for the purpose of building a universal and Even when a contraction gives rise to nonvanishing terms,
efficient symbolic manipulation program. the inspection of the number of remaining creation and
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annihilation operators and their types in the strings can indicate comparison of two expressions by permuting the common

that they eventually lead to only vanishing contributions when indices in all possible ways to examine whether the two are

fully contracted. TCE identifies and erases partially contracted equivalent.

strings that will vanish when fully contracted. It is critical to Subsequently, TCE examines index permutation symmetries

erase them early to maintain the number of partially contracted among the tensor contraction expressions. When there are two

strings at a manageable level, which otherwise tends to grow or more tensor contraction expressions that are related to each

exponentially. In the above example (eq 2), the first two terms other by index permutation, TCE consolidates them into one

vanish when fully contracted. tensor contraction expression acted upon by a sum of operators
A contraction can often give rise to the equivalent terms that permute just the indices of output tensors (a permutation

multiple times, which differs merely in the order of tensor parts of common indices merely gives rise to equivalent expressions).

of operators (e.g., integrals and excitation amplitudes), the orderEquation 4 (after the disconnected term is deleted) can thus be

of permutable indices (e.g., indices of an integral matrix), or simplified to

the labels of common (summation) indices. A simple and

efficient way to consolidate these equivalent terms is to recast _|_1(1 P3P4h1h2)tpsp Pops, hrhg _ 1(1 — p3p4h1hz)tp3p4 Pop7, s

the expressions in a canonical forso that the expressions of Popn T i Vo papiy) ey

the two equivalent terms become identical by character and are psp ospa. ohe s Depaerpa. e

rapidly merged. The definition of a canonical form is rather  + Ztitin v — (1 = Popin)tn i Vo, (6)

arbitrary, and TCE adopts the following: the tensor parts of

the operators are in alphabetical order, then in the order of theirwhere permutation operators are also expressed in the tensor

ranks, then in the order of labels of the indices that are not notation (subscript particle indices of the permutation operator

among the common indices. All common indices are subse- are replaced by the corresponding superscript particle indices,

quently relabeled and sorted in a unique order. Equation 2 hasand superscript hole indices are replaced by the corresponding

only two distinct nonvanishing terms and is hence rewritten in  subscript hole indices in the above equation). Occasionally, an

the canonical form as index permutation of output tensors acting upon a tensor
1 contraction expression results in an expression equivalent to the
_atpspetﬁelsgﬁn Siigiim{h p,b 3}{91 291391591 4}{P5p6 ) original expression. This occurs when there are two or more

equivalent tensors in the expression (i.e., the tensors of the same
{pipihishib1 OO type and rank contracted in the same topological manner). In
1 this situation, TCE prefers to rewrite the expression in a more
— {PsPotPsPy  Gisti3p) h h..h symmetric form with a permutation operator, for reasons that
64 My 101015 ¢ p4p3}{912913915gl4}{p8p9 1ol will become apparent. The final tensor contraction expressions
{plpih;}100(3)  foreq Lare

For an ansatz containinghzecond-quantized operators, +1(1 pg3g42122)tpsp ﬁeﬁsl};ze — 1(1 pg3g42122)t p Eﬁﬁ?z,gsgs
cycles of an iterative contraction procedure lead to fully s 8 e s 1R e
contracted expressions + ltpspetpap4 hzhs __ (1 _ Pp3p4h1h2 4 Pp3p4h1hz _

1 hyh, thhspepg AT P4PahoNy
— ZtPsPsgPePa, hrhe | Psp PeP3, M7he _ ~PaPayPep7, hshe Pap3ahoy {PepeP7ds, hghe
t 3th?“s pspe 4th7hs PsPg 2th5h1th8h2 PeP7 PDAPghh)t th 5, 9597(7)
p3p4tpep7 hhg __ {Pspagpps, hshe Pspatp7p4 hehg Note that the permutation operator of the last term of eq 6 is
hShl PsP7 heh hshz P5p7 hshz Psp7 symmetrized.
psp paps oo papigPes oo 2.2. Generation of an Operation Tree Although multiple
th thon,Vpope T tlh:t hoheVpope 4) tensor contraction expressions, such as eq 7, may be imple-

mented for the purpose of verifying the expressions themselves,
for the above example. They need to be further simplified by they are premature for the synthesis of a high-performance
virtue of the topological properties of the expressions akin to Program. They must first undergo (1) the canonicalization of
those of corresponding diagrammatic representations. First, thepermutation operator expressions, (2) the strength reduction
tensor contraction expressions that correspond to disconnectedwhich determines the order of contractions), (3) the canoni-
diagrams may optionally be deleted. The connectedness of tensofalization of binary tensor contraction expressions, (4) the
contraction expressions can be inferred straightforwardly by factorization, and (5) the common subexpression elimination
chasing the tensor indices. In eq 4, the last term is disconnectedintermediate reuse). The result of these processes is an operation

because the only contraction takes place between tensod tree consisting of binary tensor contractions and additions.
one of the two tensorts Examining the connectedness may also ~ The canonicalization of permutation operator expressions
identify “cyclic” tensor contraction expressions, such as serves the dual purposes of guiding the program generator to

invoke index permutation symmetry and facilitating the subse-
guent optimizations. The use of the index permutation symmetry
is crucial in a many-electron theory calculation because it
dramatically reduces both the storage and operation costs of a
whose corresponding diagram contains a closed loop formedtensor contraction and it also enhances the stability of the
by more than two vertices. A cyclic tensor contraction typically calculation. Consider the following example taken from the
arises when deexcitation operators are employed in the ansatzCCSDT Tz amplitude equation:

The expressions of this type cannot be handled effectively by

the canonicalization technique. When TCE detects a cyclic oDippe — 4 = (1 pPaPepehisiy _ PP4P5p6h3h2h1)tp4p5P6 hrhg (8)
tensor contraction expression, it performs a more rigorous My PaPsPezufs PaPaPf gy

+= (tplpz)*tpspe P1P2 (5)

hsh,/ “hshy Pspe
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By virtue of the index permutation symmetry of input and output In eq 11, the permutable sets @, ps, ps} and{h, hp}. The

tensors canonical expression of a permutation operator is unique and
is hence a convenient representation for the subsequent strength
tPaPePe — —PuPsPs — PsPablo — ... — {PoPsps 9) reduction, factorization, and common subexpression elimination
783 873 7783 387 processes
QPPe — _ Pia — . Peby — , Debr (10) Strength_ redl_Jction re_fers to the process of finding thg prder
hyh, hahy by~ hohy of contractions in a multiple tensor contraction with the minimal

) number of arithmetic operations. Owing to the associativity and
we may store just the nonredundant elements of each tensorcommutativity of a tensor contraction, the outcome of a multiple
which is equivalent to restricting the ranges of indices as tensor contraction is invariant to the contraction order, whereas
the b b, UEZ:EB, andyp-°=°. This not only reduces the storage  the operation cost can be strongly dependent on this parameter.
space (by a factor of ca. 36 forTa amplitude tensor) butalso  There are ih — 1)! distinct contraction orders of am-fold
ensures the antisymmetry of the wave function and prohibits multiple-tensor contractioff,and TCE determines the best order
the calculation from erroneously converging to a nonphysical by comparing the peak operation cost, then the peak memory
symmetric or asymmetric wave function. The operation cost of cost, then the aggregate operation cost, and then the aggregate
a tensor contraction can also be reduced by restricting the rangesnemory cost of all possible contraction orders. The operation
of the indices of the output tensor (the external indices) and and memory cost are measured in terms of a polynomial of the
common indices. In eq 8, we can recover all of the nonredundantranges of hole and particle indices, and it is assumed that the
elements of the output tensof'_f*_} by performing the  range of a particle index is marginally greater than that of a
contraction within the restricted rangesmf< ps < ps andh; hole index. The strength reduction must also be applied to
< hy and by subsequently applying the permutation operator to permutation operators. An overall permutation operator of a
the result. Likewise, we may vary the common indices within multiple tensor contraction can be expressed as a product of
the triangular range dfi; < hg and multiply the result by an ~ component permutation operators in a number of ways. How-
appropriate scalar factor to compensate for the reduction in theever, for a given contraction order, there is only one sensible

index ranges. We may therefore rewrite eq 8 as way of decomposing the associated overall permutation operator
- - - that ensures that the intermediate tensors defined by the binary
Pa<ps<ps — __ pPaPsPeNzMiNz _ pPaPsPenan2Nyy +Pa<Ps<pPs, N7<Ng i i
Xni<n<n, = T(1 = Pooinn: — Poppihhhdtho<ich, Un<h, tensor contractions acted upon by the component permutation
(11) operators will have the desired index permutation symmetry.

For instance, a quadruple tensor contraction that appears in the

to highlight the use of index permutation symmetry (the CCSDTTsamplitude equation
operation cost of this contraction is reduced by a factor of ca.

. . <ps<Pg <ps< hs<h
24). This can be transformed further into a more transparent A <hoehe = —Ptiy et T B v (15)
expression by rearranging the indices of the permutation
Opel’ators into a “canonical” form: can be executed Stepwise as
Pa<Ps<Ps — — phi=hahaps=<ps<ps Pa<Ps<ps _ hy <hy<hgps<pepa
Xhy<hy<hy +(1 Phl<h3h2p4<p5<p6 + Xhy<hy<h, — -1+ I:)h1<h2<h3p4<p5p6 -
h1<hohaps<ps<pey tPa<ps<ps, N7<hg <hy<hapa< <
P2 t V) 12 1 <hp<hgps<pePsy s=hePa<ps  +Ps
h2<h3h1p4<p5<p6) hy<hghy “h,<h, 12) h1<h2<h3p4<p5p6)§hl<h2p<h3th8 (16)
; hgpa<ps  _ _ phiha<hgps<psps
or equivalently Ehi<hy<h, = T(1 — Py <hipi<pep
Nihp<hgps<pspey , Ng<hioPa<ps<po
<Ps<Ps — +Pa<ps<ps, h7<h P Kt M 17
Pe<Pe<po — {fu <Pt fr <l (13) e <1y <Pep) iy thy<hi<hy (17)
hg<ho _ | hg=<h
Da<Ps=Po — £Pu=Ps<Po _ £Pa<Ps<Po | zPs=Po<ps (14) Knp, = +Up8<p1°tﬁ7 (18)
hy<hy<hy hy <hshy hy<hgh, h,<hsh, e T

A canonical permutation operator maps the index ranges of the.The overall permutation operatdPdin abbreviated notation)

tensor it acts upon back onto the original index ranges as it IS fgctonzed.such thqt intermediate tens@smd ¥) become'
permutes the indices. Consequently, as eq 14 illustrates, it isantlsymr_netr!c t_o the interchange of any pair of contra}vanant
not necessary to lift the restrictions on the index ranges, of or covariant indices of the output tengpfthe e>_<t(_arnal |nd|ces)_
and hence it offers the most compact way of performing tensor and to th? mtgrchange of any pair Of. the remaining contravariant
contractions with index permutation symmetry (see also section o;SpAC?p\S/ar|ant_|nd|ces (the internal |nd|ce§). The mtern_we(ﬁate
2.3). This is contrasted with the noncanonical permutation Sh<h,<h, fOF instance, has two contravariant external indices
operators in eq 11, which entail partially extended intermediate {P+ Pst, oné contravariant internal indeghg}, and three
storage forE. covariant external indice§hy, hy, hs}, and its desired index

A permutation operator can be brought to a canonical form Permutation syrr]n<rrr]1etry iPs < ps andhy < hp < hs. The
by first rearranging the columns of indices in ascending order contraction ofxy’, ™ and tf - brings together the three
of the origin indices (i.e., covariant (subscript) particle indices Covariant external indices, < h, < hs to form &%, at the
and contravariant (superscript) hole indices in the above expense ohg < higandps < ps. Therefore, for the intermediate
example) and then by sorting the destination indices (i.e., éﬂsﬂ‘gﬂsha to be antisymmetric to permutations amofiy, hy,
contravariant (superscript) particle indices and covariant (sub- hs}, we’must antisymmetrize the contraction with the permuta-
script) hole indices) whose corresponding origin indices are in tion operator that interchangds with hy and hy with hs.
a “permutable set.” A permutable set is a subset of the externalLikewise, the intermediatqﬁ‘fﬁ;ﬁg is endowed with index
indices, any permutation of which leaves the tensor that the permutation symmetry amoﬁgu, Ps, Ps} by the permutation
permutation operator acts upon unchanged, apart from its parity.operator that interchanges with ps and ps with pe.
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As this example illustrates, the appropriate form of a TABLE 1: Operation Tree for the CCSD Energy Equation
component permutation operator is dictated by the form of the

) . he _ 1ghe 1 L h
binary tensor contraction. Therefore, TCE performs strength Edp =t + ztﬁjﬂg‘;pi
reduction by generating component permutation operators on 1

: ) ) — 4Ps(E \Ne o Lpipo, haha
the basis of the binary tensor contractions and subsequently e=+t(Sop + 4th§h4”pfpz

examining the compatibility between the component permutation
operators and the overa!l permutation operator. When the overall.l.ABLE 2: Operation Tree for the CCSD T, Amplitude
permutation operator is not equal to the product of the gquation

component permutation operators, TCE is unable to process the
equations any further. This might appear to be a limitation of

=\ — __ps, hehy
(Hl)P3 theypspﬁy

TCE, but this is not the case. Incompatibility occurs only when (&) =+ + By
the ansatz supplied to TCE intrinsically violates the antisym- G )h7 = +fM oy 5 2)h7 — P et l-tpgp4yh5h7
metry of wave functions and hence the mechanism prevents a 2h ot S22 TR, 9N TRsby
faulty ansatz from going undetected. G =+ 1 — tﬁ;‘ugggj

Judging the identity of two permutation operators deserves (55);32 +f 23 + (El)gi

caution. For example, apparently distinct permutation operators
Pﬂiﬂzhzgjﬁggg and—Pﬂiﬂ;ﬂ;ﬁjﬁ;ﬁg are equivalent to each other in the
context of eq 16 becausﬁ}jﬂ“h225h3 is antisymmetric to the
interchange ops andps. The canonicalization of permutation
operators expedites this judgment by bringing the expressions
of two equivalent permutation operators into an identical form.
The symmetrization of permutation operators mentioned in = . ) .
section 2.1 also concerns this process. Because the products dfidices and expedites loop fusion and space-time tradeoff
component permutation operators are symmetric with respectOPtimization?t which are, however, beyond the scope of this

to the interchange of two equivalent tensors, overall permutation StUdy-) TCE identifies every factorizable pair of binary tensor
operators must be symmetrized beforehand. contractions and replaces each of them by an addition and a

Let us consider the following example of binary tensor contraction, under the tacit assumption that the strength reduc-
contractions and additions that result from the strength reductionion @nd the factorization are decoupled. Finding an optimal
process: contraction sequence of a coupled strength reduction and
factorization problem involves an intractably large search space,
and the simple exhaustive search algorithm adopted here for

hshs hahs __ +ps, hahs
(56) hip3 + Uhlps thlvpaps

Po— £ P2 _ tPo(£ 7 L P3( £ \P2 _ P3,MuPo | 1PoP7( £ Ve _
oy = T, — (S, T t(Ea)o; — thhip, T thih(So)e;

ltpzps( £ )h4h5 _ 1t9394yhspz
2°hhs\>6/hip;  o™hyhs"pap,

PaPsPs — N7PatPsps __ 1‘ h7PsPaps
Xhyhoh P9‘§h1h:thzh7 2P9Kh1h§th3h7 (19) the decoupled problem will not be adequate, although an
N effective approach to finding a near-optimal solution does seem
P — P_{PaPs, N7ho (20) . L2 - o
hyhy 2thshoPhypg to exist (e.g., the recursive intermediate factorization scheme
. . of Kucharski and Bartlett).Nevertheless, the gain in perfor-
Khlﬁg = tﬁjﬁjvpggg (21) mance on going from an optimal sequence of the decoupled

problem to that of the coupled one will not be substantial (see
Equation 19 is factorizable, and the two binary tensor contrac- section 3).
tions and an addition can be converted into a binary tensor TCE also supports the common subexpression elimination
addition and a contraction by virtue of the distributive and that permits the precomputation and reuse of the results of
commutative nature of tensor algebra. However, in the above equivalent contractions (persistent intermediates as opposed to
representation of the tensor expressions, the factorizability is volatile intermediates) of two input (nonintermediate) tensors
inconspicuous, owing to the apparent mismatch of the indices at the cost of increased storage space. This optimization, despite
in the common tensorsff* and {7 in the above equation).  its appeal, will not necessarily be invoked in the applications
The mismatch arises partially from the degrees of freedom in discussed in this article because the reduction in the operation
representing a set of tensor contractions that are related to eacleost by the optimization is relatively insignificant and is largely
other by index permutation symmetry. Therefore, prior to canceled by increased memory and I/O operation cost in
factorization, TCE canonicalizes binary tensor contraction practice.
expressions so that the two tensors that are contracted are sorted Tables -3 are examples of operation trees generated by
in a unique order and the external indices are in ascending orderTCE, which may be viewed as intermediate codes that describe
across the two tensors (the corresponding permutation operatothe operations, the order of execution, and the data dependencies.
is also re-expressed accordingly). Equations 2B are rewritten Each operation that appears in the trees is either a unary tensor

as substitution, a binary tensor contraction, or a tensor addition
by virtue of the strength reduction. Many of the volatile
PaPsPs — _p {PaPsghiPe _ lp {DaPs, N1Ds intermediateg are defined as a sum of tensors as a consequence
Zh;hh, olhyh,Shyhy — 5 9thyh Knyhy > . .
of the factorization, and the intermediates represented ase

— _p tp“pf’( Es 4 1 h7pe) 22) persistent intermediates that are reused several times. The order
Ohjhy\Shohy T 5 hphg of entries in the operation trees reflects the data flow. Internally,
s oape. Moo TCE stores an operati_on tree as a data structure analogous to
§h1h2 - _PZthththpB (23) that of a directed acyclic graph (DA® each node of the tree
o . representing a binary tensor contraction or a unary tensor
Kihe = theVpin (24) substitution and an edge connecting two adjacent nodes corre-

sponding to a tensor addition. The leaf nodes of the tree are
in the canonical form that exposes the common tensors and lendsinary tensor contractions or unary tensor substitutions of input
itself to rapid factorization. (It also manifests the common loop tensors or persistent intermediate tensors. The definition of the



9892 J. Phys. Chem. A, Vol. 107, No. 46, 2003

TABLE 3: Operation Tree for the CCSD T, Amplitude
Equation

= \hrhio Ps, ) h7ho
( ) hypg +th1 PsPy

Hirata

takes place under the above listed conditions. The conditions
preclude any contraction except for that between an excitation
amplitude tensor and an integral tensor and that between an
excitation amplitude tensor and an intermediate tensor. Because

10M1 — _ —P7Ps, Mot
(Ednp = — Sthhvpe: : : :
Zh 2 1uh,"prps an integral tensor is encompassed by eq 25, we can confine
(EheP = — 1 p6Uh10p3 our analysis to the binary tensor contraction of the form
1Ps h,“psPg
(:4)h10_ —thy h7h10 €1< €01 <t <ie<Cepp <t o1 <"t <€g=Cor1 <"+ <Gt
" p5p6 hyhyy Pgea+1<"'<euvid+1<'c"<?:<Ce+1 <G teil <2<C+1< *=<Cqy (26)

hyghiy h oh
(EZZQ) 1P511 ipsu + ( 1) hyps
(Ezz)hwhll — Uhlﬁhll + Pztps(SZZZ)Emhll + (22 )hlohn

(523)hwp3 +yﬂ1op3 + (= )h1op3

whereP is a sum of permutation operators that makes the tensor
it acts upon antisymmetric to the interchange of any pair of
Eis_ hwl"s - hmhps contravariant or covariant external indices. Notice that the

(S20)p” = H 57+ (Ba)y, common (summation) indices are among the internal indices

(st)ﬂ;'];"_ R’B;°+ (” Dip of the intermediate tensdrand that an index of the excitation

(gz)hwps ths + tPs (gzz)hw"n PAR(E 0 ns amplitude tensaris either a common index or an external index.

s The contraction of eq 26 is performed in the following three
distinct steps. First, we “decompress” the tensors by lifting some
of the restrictions on the index ranges

P : hzh p De. N10P3
3l 5(&24) 10 + Pzt (525) 7t 10 hshzvp;ps

l

P3ps — P3P4 Psp4

(53)h1p5 h1p5 2t hy“PsPs ) . ) )
h h _' e]_<".<%v|1<'.'<| <CC+1<."<CC| s el<"'<%'ll< -.¢<| lCC+1<.”<cd

(&42) 9= +f o + ( ge +1<'"<ebvid+1<'c"<ie<ce+1<"'<cf Ee +1<"'<ebvid+1<"c'<ievce+1<"'<cf
ho _ h h hho 1 heh

G =+ + BXE — Bl - SRR 27)
= 85— gfe e — Lipepe, g €41 =+ <€ <o <r <0 _, (@ 1=" <€ Cer1 < <Gy

(55 +f t7 p5p6 2th heVpeps teg+1<"'<%<cc+1<'“<cd teg+1<"‘<%cc+1<"'<cd (28)
h9h11 — hghu + hohy1

(S “hypy ( Vhypg such that the common indices can vary independently from the

= R+ PR+ IR

zps

other indices. The restricted ranges among the common indices,
however, merely give rise to a scalar factor @t c)!(f — e)!.

heps __ hep; hy p pap7, heh: . .
EDnpe = Tonp: + 2 3y, — t e Vpep, Second, we carry out the summation over the common indices

hyps ™ 2 ;g p5p7

P3P4 — +Upsp4 pzthw( gz)hmm Pzth%(&)ﬁjﬁg pth3P4( & 4) and obtain
1 heh )
P. P3P P3P, P PP P Pspo, Pap vy <ere< <.
PLiS 5(55) ) thon, (Sednah, — Palh 5(57) haps thShz PP 77:;1<...%’e|1’idﬂ o Qflelegﬂ =(d-—o)l(f —e)!

§e1<...f'eav|1§...<|'C.,'CCJY1<...<(';E’. taj+1<:::<eg'ce+1<:::<cf (29)
persistent intermediate tensors is attached to the tree as an Cat1 =T Tl =T S leCor ST TG g ST T Gy TG
auxiliary data structure.

2.3. Synthesis of a Computer ProgramTo minimize the ~ Third, we “compress” the intermediatg by introducing the
number of arithmetic operations and the amount of storage spacdestrictions on the index ranges with the aid of the permutation
by the use of index permutation symmetry, we need to know Operator
how an intermediate tensor transforms upon the permutation _
of indices. There does not seem to be a simple answer to th|s|377e = <<~-ei‘}'a5" <'ceg+|1: <eg.<q1_>
question in general situations, but under the condiffotisat e e
(2) there is no deexcitation amplitude tensor, (2) there is not R L Pl A (30)
more than one integral tensor (a tensor that originates from the L
Hamiltonian operator), (3) the strength reduction seeks an
operation minimal contraction sequence for an individual The intermediate consequently recovers the general form of
multiple tensor contraction, and (4) an overall permutation intermediate tensors as expressed by eq 25.
operator is factorized in the manner prescribed above, we can N addition to the index permutation symmetry, we must also

write an intermediate tensor in the following general fdén:  take account of spin (within the spitorbital formalisms) and
the real Abelian point-group symmetry of orbitals (i.e., tensor

indices) simultaneously to minimize the number of arithmetic
operations and storage space. This amounts to exploiting the
Here the indices of the intermediate tensor are categorized intofact that the tensor elements are nonvanishing only when the
four disjointed sets (i.e., contravariant external indiegs  following conditions are satisfied:

< «++ < g, (the superscript indices that appear in the output

e <+ <@uiy<++<i¢
ea+]_<".<eb'ic+l<."<id (25)

tensor of the multiple tensor contraction), covariant external covariant contravariant

indices ex+1 < -+ < @, contravariant internal indices Z Og= z o (31)
< --+ <. (the superscript indices that are not external indices), 9 9

and covariant internal indicasy; < < ig), and any pair of covariant contravariant

indices in each category is permutable. Input tensors (excitation |_| Iy= |_| Iy (32)

amplitude tensors, integral tensors, etc.) and output tensors can
also be cast in this form.

This general form of an intermediate tensor can be deducedwhere o4 and I'y are the spin momentum and irreducible
by examining the process of a binary tensor contraction that representation, respectively, associated with tensor igdex
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1 PARALLELIZED LOOP over p4t, pSt < p6t, hit < h2t < h3t

2 IF (X is nonzero by spin and spatial symmetry) THEN

3 LOOP over p7t < p8t

4 IF (V is nonzero by spin and spatial symmetry) THEN

5 IF (p8t < p4t) GET +T(p7t,p8t,p4t,hlt,h2t,h3t)

6 IF (p7t < p4t) & (p4t < p8t) GET -T(p7t,p4t,p8t,hit,h2t,h3t)
7 IF (p4t < p7t) GET +T(p4t,p7t,p8t,hlt,h2t,h3t)

8 SORT to T'(p7t,p8t,p4t,hlt,h2t,h3t)

9 GET +V(p5t,p6t,p7t,p8t)

10 SORT to V' (p7t,p8t,p5t,p6t)

11 IF (p8t = p7t) factor = 0.5

12 IF (p8t # p7t) factor = 1.0

13 X'(p4t,hit,h2t,h3t,p5t,p6t) = factor x T'x V'

14 IF (p4t < p5t) SORT & ADD +X(p4t,p5t,p6t,hlt,h2t,h3t)
15 IF (p5t < p4t) & (p4t < p6t) SORT & ADD -X(p5t,p4t,pbt,hit,h2t,h3t)
16 IF (p6t < p4t) SORT & ADD +X(p5t,p6t,pdt,hit,h2t,h3t)
17 END IF

18 END LOOP

19 END IF

20 END LOOP

21 SYNCHRONIZE

Figure 1. Overview of a subroutine automatically generated by TCE for tensor contragiffi = “/2Psth7rvp:. Sorted and unsorted tiles of
tensors are distinguished by primes.

Executing conditionals 31 and 32 or imposing the index-range to control the peak memory usage by adjusting the tile sizes at
restrictions element by element in the process of tensor run time.

contraction is inefficient owing to the substantial overhead of  Figure 1 illustrates a program automatically synthesized by
having IF statements in a performance-critical section (i.e., TCE for tensor contractiopP = Y Pt e, The nested
matrix multiplications and matrix sorts) of the calculation. oyter loops (line 1) run over the tiles of tensowith the tile
Alternatively, one might decompress tensors (cf. eqs 27 andyange restrictionps < ps andhy < hx < hg. Although tensor
28) and rearrange their elements according to the spin and spatial, s stored with the full restrictions qfx < ps; < ps andhy <

symmetry to expose a long uninterrupted sequence of arithmetich, < hy, we cannot imposes < ps in the contraction stage
operations. However, such an algorithm tends to require a largepgcquse—tPsPr=Pe  Pa=Ps gnd tPPr=Pe  ,Pa=Ps 3¢ well as

hy=hy<h < h,<h,=<h =<
memory space to accommodate the decompressed tensor thgbupy<py ,picpd~ 5 o1 ™ pspsp PrPe

X dund | T his alaorith. i Vpy=p contribute to yj <ha<hy by virtue of the
cqntams many redun antgements. ° pvercomet IS qgorlt “permutation operator. Immediatefy within the loops, we execute
mic dilemma, we resort to index-range tiling (also called index-

. " L . N ~~ a conditional of spin and spatial symmetry to know whether
range blocking) that partitions indices into tiles (blocks) with the tile of tensoy, has any nonvanishing element (line 2). When
each tile consisting of indices with the same hole or particle

; q al q loit th the tile is nonzero, the operation enters the inner nested loops
type, spin symmetry, and spatial symmetry, and we exploit these o the common indicesy < pe (line 3), which are followed

symmetries at the tile level (rather than at the element level). by a conditional (line 4) to test whether the tile of tensds

For example, an excitation amplitude tensZp*-f° is nonzero by spin and spatial symmetry (when the tileg ahd
stored astp*-pp* where hy (pa),... is a group of hole v are nonzero, the tile dfis also nonzero). At this stage, we
(particle) indices sharing the same spin and spatial symmetryretrieve the tiles of tensoitsand » from storage. Because the
symbol. The range restrictions imposed on the tile indices to a loop indicesps, p7, andpg: do not conform to the full tile index-
large extent minimize the storage space for the tensor by therange restrictions of tensay the tile associated with the loop
use of index permutation symmetry. Redundant elements occurindices may not be located in storage. In that case, the
only within the “diagonal” tiles that are characterized by nonoverlapping conditionals in lines-5 map the tile to an
equalities in the tile index-range restrictions. The proportion of equivalent tile (apart from its parity) in storage. For tensor
redundant elements diminishes as the tile size decreases, and the tile can be obtained directly from storage (line 9) because
vanishes in the extreme where each tile consists of just onethe restrictions on the loop indicgs: < pe and px < Pa
index. Conditionals 31 and 32 can be executed only once for coincide with those of the indices of tenserin storage.
each tile to decide whether the tile is zero. Therefore, the tiling Subsequently, the arrays containing the tilesarfd are sorted
allows the conditionals associated with spin, spatial, and index (lines 8 and 10) such that the loop over a composite common
permutation symmetry to be moved to outside of the performance-index has unit stride in the tile-level tensor contraction (matrix
critical section of the calculation, and it also permits these multiplication) in line 13. The resulting tile of tensgr is
conditionals to map the tiles of a tensor to their symmetrically multiplied by an extra factor of 2 whemy, < ps; to compensate
unique tiles and to retrieve (store) them directly from (to) storage the bypassed common index rangepaf> ps: (lines 11 and
without explicitly decompressing (compressing) the tensor. 12). Finally, the tile of tensoy is mapped to a symmetrically
Furthermore, the tiling also exposes an adequate granularity ofunique tile and is added to storage (lines—14). Note that
parallelism (the tile-level matrix multiplications and matrix this mapping corresponds to the reverse operation of the
element sorts can be performed in parallel) and offers a meanscanonicalized permutation and also that the conditionals (lines
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CALL OFFSET_ccsd_e_1_1(file_il,offset_il,size_il)
CALL FILENAME(‘ccsd_e_1_1_i1’,filename)

CALL CREATEFILE(filename,file_il,size_il)

CALL ccsd_e_1_1(file_f1,offset_f1,file_il,offset_il)

CALL ccsd_e_1_2(file_t1l,offset_t1,file_v2,offset_v2,file_il,offset_il)
CALL RECONCILEFILE(file_il,size_il)

CALL ccsd_e_1(file_t1,offset_t1,file_il,offset_il,file_i0,offset_i0)
CALL DELETEFILE(file_il)

CALL ccsd_e_2(file_t2,offset_t2,file_v2,offset_v2,file_i0,offset_i0)

w0 ~NOoG W

[{e]

Figure 2. Caller subroutine for the CCSD energy equation generated by TCE.

14-16) overlap with one another because the permutation tensors in the subsequent tensor contractien tpS(.gl) (line
applies to diagonal tiles also. 7) and is destroyed immediately after its use (Ilne 5)

The nested outer loops (line 1) are parallelized, and the
computational workload (the tile retrieval, tile-level tensor sorts 3. Applications of the Tensor Contraction Engine
and contractions, and tile accumulation) is balanced between
processors by dynamical workload allocation. Therefore, each As an initial application, we have employed TCE to derive
processor performs asynchronously the workload dynamically the equations of various models of Cl, CC, MBPT automatically

assigned to it within its local memory space that accommodates@nd implement them into parallel computer programs within

the tiles of the tensors, and synchronization between processord® compuzt?tiﬁnal cherlniskt]ry ;r)]rogram su_itesl of NWCHEBNd
occurs only at the conclusion of the tensor contraction processUTCHEM' The models that have been implemented were spin

(line 21). Dynamical load balancing is essential because tile Unrestricted CISD, CISDT, and CISDTQ, spin-unrestricted
sizes can be significantly different from one another and it is CCD, LCCD, CCSD, LCCSD, QCISD, CCSDT, and CCSDTQ,

hard to distribute the workload statically evenly across proces- 21d noncanonical spin-unrestricted MBPT(2), MBPT(3), and

sors within the present algorithmic framework. Although they MBPT(4). For details of these models, see refs—_lg.. )
are inconspicuous, interprocessor interactions exists in the tile 1€ ansatz of Cl theory (e.g., that of configuration-interaction
retrieval and accumulation processes as overlapping 1/0 opera-Single, double, and triple substitutions (CISDT)) may be given
tions to the tensor storage. as

TCE generates subroutines (Figure 1) for unary tensor

substitution and binary tensor contraction and also caller C=C+C+GC (33)
subroutines (Figure 2). We have interfaced these subroutines _

with the computational chemistry program suite UTCHEM E= Qo+ O)Q (34)
(in Fortran90) for sequential executions and with NWCHEM 0= Q;Hy(1+ 0)Q, — EQ,CQ, (35)
(in Fortran77) for sequential and parallel executions on the basis

of the following parallel /0 schemes: (1) a shared file algorithm 0= QH\(1+ C)Q, — EQ,LCQ, (36)
based on a global file system using the shared file libfa(g) _

a replicated file algorithm based on a distributed or global file 0=QsH\(1+CO)Q — EQLCQ (37)

system using the exclusive access file libr&rgind (3) an incore

algorithm using the global array libra?§.In the shared file ~ whereQn is a projection operator onto the manifold etuply
algorithm, each tensor is stored in a file on a global file system substituted determinants from the reference wave func@an,
accessed by all processors, whereas in the replicated algorithnis an n-fold excitation operatorHy is the normal-ordered
each processor has its own copy of a file and updates the copyHamiltonian operator, anfl is the correlation energy. Equation
asynchronously. In the latter algorithm, the copies of the file 34 can be expressed in an explicit normal-ordered second-
must be reconciled at the end of tensor contraction so that eachquantized form as

copy contains a complete intermediate tensor. In the incore

algorithm, a global memory space residing across all computer g = +f glcp3E(D|{glgz}{p h,} 100

nodes is employed in lieu of a file system, and hence 1/O

operations are replaced by interprocessor communications. QIQZCESE(N {9192949 3! {p he} |00

Tensors are stored as a 1D array of symmetrically unique 4 7040, "
tiles, and the elements of each tile are stored consecutively. The 1 PP
positions (offsets) of the tiles in the storage are precomputed Zf gic 2 “E(])|{glgz}{p3p4h h} |00
and stored in memory for each intermediate tensor by a 1
subroutine generated by TCE. Figure 2 illustrates a sequence 16 Ve Chn O gy '910,0.}{ pipthgh.} |00
of operations for evaluating the CCSD energy equation (Table
1). In lines 13, the program precomputes the offsets, size, and £ G1P3P4Ps 1
name of a file that reserves the storage space for intermediate 36 % sh7“sm|{glgz}{p3p4p5h8h7h6} 100
&1 Subsequently, it issues subroutine calls for unary tensor 1
substitution fl)p6 = fhe (line 4) (1 denotes a Fock matnx + a8 g;gjcﬁzﬁgﬁzoml{glg;%ga}{pgpgp%lohghg}|0|]
element) and blnary tensor contractloal)g (51) (38)

Yol (line 5). When a replicated file algorithm is em-

poneci 5tensoEl, written in fragment in exclusive access files, Equations such as this can be parsed and processed by TCE,
is consolidated into a complete tensor, which is then broadcastwhich subsequently synthesizes parallel computer programs. The
to each processor (line 6). Tendfris used as one of the input  synthesized programs can then be compiled and executed
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without any manual modification once appropriate interface where U; and U, are the second-order single- and double-
programs to a computational chemistry program package areexcitation operators. Provided this ansatz, TCE generates the

in place. following coupled equations:
The ansatz of CC theory such as the following (coupled-
cluster singles and doubles or CCSD) E® = +1up1pzyh3h4 (52)
4 My pip,
T=T,+T, (39)
— h, 1 h 1 h
- 0= —FRuf+ FRul+ SRRAS 450k (63)
E=Q HN(l T 51— )]CQO (40) — Pipzhohioy ¢ s pip2
1. 1 0= _(1 B Pplpzhlohg)f hguh3h10
0=0 H(1+T+—T2+—T3)]Q (41) e Lo, hoh
A EEETIE ~(0 - PRRRRIIRRR, + SRR
= 1o, 15 1 p2pihach: p1pzhich P2Pihichoy+Psp1 , hap:
0=Q, HN(l T 2!T + 3!T + 4!-'-4)]CQ0 (42) +@- Ppip;hiohz B Ppipzh;hlz +prp;h;h1?)t j 10” :pg
. 1
can be processed in the same manner by TCE except that +§tﬁ§ﬁ;vﬁiﬁi (54)
immediately after the contraction step disconnected terms need
to be eliminated (f+]c means that all terms in the second-  The unrestricted Cl and CC models can in principle take any

quantized form ofHy and T must be connected by common  reference wave function such as a restricted HF (RHF), an
indices, andry, is ann-fold excitation operator). The operation  ynrestricted HF (UHF), a restricted open-shell HF (ROHF), and
trees obtained from the CCSD ansatz are shown in Tabt@s 1 3 restricted/unrestricted KohrSham wave function, whereas

In this article, we confine ourselves to “noncanonical” or  the unrestricted MBPT models are based either on an RHF or
“generalized” MBPT that is invariant to unitary transformations g UHE reference wave function. When an RHE wave function
within the just-occupied and just-virtual spaces without resorting js ysed as a reference of a closed-shell system, the programs
to Wigner's 2 + 1 rule. Noncanonical MBPT in its tensor  generated by TCE ma orbitals to thea orbitals having the
formulation is considered to be the most fundamental repre- same spatial part and avoid any redundant computation and
sentation of the theofy and is essential for linear scaling  storage associated with the Alispin-components of tensors.

algorithms using local molecular orbitéts.As usual, we  For example, among the three independent spin-components of
partition the Hamiltonian operator as a sum of the Fock operator the T, tensor t** tgﬁ, andt%, the CCD program generated by

F and the fluctuation potential and apply RayleighSchro TCE processeagland stores only theandt® spin components
dinger perturbation theory. Hence, the ansatz of second-orde op

. . . .
. : for an RHF reference. (However, this must be distinguished
many-body perturbation theory [MBPT(2)] is from spin-adapted CCD, which deals with just rtﬁé spin

@ _ components.) The coupled equations of the CI, CC, and MBPT
B = QoV(T, + T2)Qo (43) models are solved iteratively by a common driver subroutine
0=0O.F(T.+T + 0.V 44 that updates excitation amplitude tensors by a combination of
QP+ TI)Q + QVQ (44) the Jacobi iteration and the DIIS (direct inversion in the iterative
0=Q,F(T, + T,)Q, + Q,VQ, (45) subspace) extrapolation.

It may be instructive to compare the theoretical operation
whereT; andT, are the first-order single- and double-excitation counts of the CCSD program automatically generated by TCE
operators, respectively. When evaluated by TCE, this ansatzwith an equivalent program hand-coded by a group of experts
leads to a tensor formulation of MBPT(2) (see also ref 14) that in the field. According to Stanton et &Ff,the number of

reads arithmetic operations of their unrestricted CCSD program is
approximately ¥,)0?v* + 20032 + (5/,)O0*2 in the leading
E@ = +} PPz, hshs (46) order, whereO ~ O, ~ Og is the number ofa- or -spin
40" Pip, occupied orbitals and ~ V,, &~ V; is the number o- or -spin

. thap D140 hoa s virtual orbitals. The operation count of the TCE-generated
0= —fpth, +foth + ot (47 CCSD code (Table 3) is approximateRf,JO?v* + (4%,)O%\2

0= —(1— pPPcho _ ppapifihio Pplpzhghlo)f pagbs + (2%,)0*V2. The prefactors of th@2v* andO3VA terms, which
- hyh

PP1hghyo PPN PPy he? ' hgthyg usually dominate the operation count because O in most
CCSD applications, are the same or only slightly greater in the
— (1 — PPwPeshuoyf hoyPipe TCE-generated program than in the program of Stanton et al.
P1pohyhe’ ™ g hshyg .
A a0 Therefore, the TCE-generated CCSD program can compete with,
(1 — Popnhof st + vhify, (48) albeit not outperform, the equivalent, carefully hand-coded

program. The greater operation count of the former than that
which may be solved iteratively. It may be noticed that because of the latter is caused by the decoupling of the strength reduction
a Hartree-Fock (HF) reference wave function satisfies the and factorization processes in TCE.

Brillouin theorem (ﬁ; = fg: = 0) Ty is zero. Employing this Table 4 compares the CPU time for a single CC iteration
fact, we can write the ansatz of MBPT(3) as performed on a Hewlett-Packard Longs Peak Linux cluster

consisting of Intel Itanium-2 1-GHz dual processors. A com-

EC) = QV(U; + U,)Q, (49) parison of the first two rows of the Table attests to the
tremendous speedup of the CCSDT calculation brought about
0=Q,F(U; + U,)Q, + Q,VT,Q, (50) by the use of point-group symmetry. The speedup that is actually

_ observed usually does not exceed 70% of the theoretical
0= QF(U; + Uy)Qp + QVT,Qo (51) maximum speedup dii?, with h being the order of the point
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TABLE 4: CPU Time (min) for a Single Coupled-Cluster Iteration on 1, 2, 4, 8, and 16 Intel Itanium-2 1-GHz Dual Processors
of a Hewlett-Packard Longs Peak Linux Cluster

number of processors

molecule symmetry theory 110 1 2 4 8 16
CH; C CCSDT/cc-pVTZ global array 6.9 3.7 2.0 15 1.1
CH; Cao CCSDT/cc-pVTZ global array 1.6 0.63 0.37 0.24 0.17
CH, Cy CCSDT/cc-pVTZ replicated 1.6 0.68 0.35 0.20 0.13
CioHg" 2 Ca CCSD/cc-pvDZz replicated 7.2 4.2 2.6 2.1 1.7
NC,Hs"P Cy CCSDT/cc-pvDZ replicated 550 320 190 140 110

2 The azulene radical catiohThe pyrrole radical cation.

group?8 primarily because the partitioning of orbitals according intermediate tensor has two disjoint permutable sets of covariant
to irreducible representations is irregular. We consider the indices and two disjoint permutable sets of contravariant indices.
speedup achieved by the TCE-generated program to be satisfac(3—6) The index-range tiling algorithm achieves the best
tory. compromise between the conflicting demand from the minimi-

Stanton et af® also pointed out that point-group symmetry zation of the number of arithmetic operations and the minimiza-
naturally subdivides a tensor contraction (matrix multiplication) tion of the memory requirement. It moves the conditionals to
into h independent operations that can be performed in parallel, exploit spin, spatial, and index permutation symmetries to the
although they did not actually parallelize their CCSD program. suburb of the performance-critical section of the calculation
This is realized in the TCE-generated programs by virtue of without necessitating large temporary memory space to accom-
the tiling algorithm and the dynamic load balancing scheme. modate decompressed tensors. It also exposes an adequate
The tiles can either coincide with symmetry blocks of orbitals granularity of parallelism and offers a means to control the peak
or subdivide them and are therefore adjustable to available memory usage by adjusting the tile sizes.
memory resources. The tile-level matrix multiplications and  Despite its proven practical usefulness, the TCE program
matrix sorts are performed in parallel within the local memory presented here is an initial prototype, and its capabilities are
space of each processor with vectorized kernels (the DGEMM currently being actively enhanced in a multi-disciplinary, multi-
subroutine of the BLAS library). Although parallel performance institution project that involves quantum chemists and computer
falls off gradually as the number of processors increases, bothscientists. A list of enhancements that are being considered for
the global array and replicated algorithms exhibit reasonable TCE’s program generator includes storage-space minimization
scalability for methylene. Expectedly, the replicated algorithm via the loop fusion and spae¢ime tradeoff techniquésand
sustains slightly better parallel performance than the global arraythe development of a universal interface to various quantum
algorithm, owing to the greater communication overhead in the chemistry software packages. Needless to say, TCE offers an
latter. The global array algorithm, however, is expected to be expedient, exact, and perhaps even pedagogical means to derive
scalable with respect to problem size, but the replicated and implement existing and new models of many-electron
algorithm is not. If the fall off were primarily a consequence of theories for the accurate theoretical treatment of electronic,
small serial components within the CC iteration, then the magnetic, mechanical, and spectroscopic properties of atomic
scalability would improve for a more time-consuming calcula- and molecular systems, which may include but are not limited
tion because the calculation would have an increased proportionto equation-of-motion CC and MBPT for excited states,
of parallel components. The fact that the scalability does not relativistic correlation theories, analytical energy derivatives,
improve for the azulene or pyrrole radical cation may therefore combined CC and MBPT such as CCSD(T), and multireference
indicate that the overhead arising from the overlapping I/O CI, CC, and MBPT.
operations is not negligible or the dynamical setting for the
workload balancing is not entirely successful in decomposing Pr
the parallel portion of the problem evenly. It is not known at
this moment whether stagnant scalability is inherent to many-
electron theories that suffer from complex data dependency or
if it can be overcome by an alternative parallel strategy that
also maintains the universal applicability of TCE.

The results of the applications of the electron correlation
methods implemented by TCE to the problem of the singlet
triplet separation of methylene are available in the Supporting
Information.
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