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We have developed a symbolic manipulation program and program generator (tensor contraction engine or
TCE) that abstracts and automates the time-consuming, error-prone processes of deriving the working equations
of a well-defined model of second-quantized many-electron theories and synthesizing efficient parallel computer
programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs
valid contractions of creation and annihilation operators according to Wick’s theorem, consolidates identical
terms, and reduces the expressions into the form of multiple tensor contractions acted upon by permutation
operators. It subsequently determines the binary contraction order for each multiple tensor contraction with
the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors),
and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and
index permutations is translated into an optimized program that is combined with the NWCHEM and UTCHEM
computational chemistry software packages. The programs synthesized by TCE take advantage of spin
symmetry (within the spin-orbital formalisms), real Abelian point-group symmetry, and index permutation
symmetry at every stage of the calculations to minimize the number of arithmetic operations and storage
requirement, adjust the peak local memory usage by index-range tiling, and support parallel I/O interfaces
and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic
derivation and implementation of parallel programs for a range of predictive computational methodss
configuration-interaction theory (CISD, CISDT, CISDTQ), generalized many-body perturbation theory [MBPT-
(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and
CCSDTQ), some for the first timesand discuss the performance of the implemented programs.

1. Introduction

Electronic computers have enabled a complex sequence of
arithmetic operations in quantum mechanical calculations of
many-electron systems. Equally complex are the symbolic
manipulation processes of deriving the working equations of
many-electron theories and implementing efficient computer
programs on the basis of these equations, which are also subject
to abstraction and automation by computers. The objective of
this study is to develop a general-purpose computer program
that performs both symbolic manipulation processessa program
that manipulates second-quantized operators and derives the
working equations of any well-defined second-quantized many-
electron theory, analyzes these equations, and translates them
into a thoroughly optimized parallel program. The significance
of such a program is evident. (1) It expedites time-consuming
and error-prone derivation and computer implementation of
various many-electron theory models, (2) it facilitates parallel-
ization and other laborious optimization of synthesized pro-
grams, which may be tailored to a particular computer archi-
tecture, (3) it enhances the portability, maintainability, and
extensibility of synthesized programs, and (4) it helps design
and test a new many-electron theory model or implements
models that are too complex to be hand-coded.

A number of researchers have capitalized on computer-aided
formula derivation and program synthesis in the past, and some
symbolic manipulation programs with a varied degree of

sophistication have been developed.1-7 A pioneering and
perhaps the most thorough study was conducted by Janssen and
Schaefer,3 who built a computer program that automated the
derivation and computer implementation of coupled-cluster
models for open-shell systems. There have also been some
studies that aimed at performing calculations of various many-
electron theory models in a single algorithmic framework,
sometimes at the expense of efficiency. The prime examples
are determinant-based general-order many-body perturbation8,9

and coupled-cluster theories10-12 and the remarkable string-based
general-order coupled-cluster theory of Ka´llay and Surja´n.13

These and the computer-aided formula derivation and program
synthesis are closely related in the sense that both approaches
require a high degree of abstraction of the equations and
constituent quantities of many-electron theories.14

We have developed a symbolic manipulation program of
second-quantized operators and a program generator, which we
call a tensor contraction engine or TCE,15 adopting the design
philosophy of Janssen and Schaefer. TCE inherits various
techniques invented by these and other authors,3,5-7,13,14but its
applicability is broadened and its capabilities in equation analysis
and program optimization are significantly enhanced to the
extent that the computer-synthesized programs can compete with
hand-coded programs in terms of operation and memory cost.

TCE is based on the second-quantized representation of many-
electron theories, which is general and covers a wide spectrum
of models ranging from configuration-interaction (CI) theory,
many-body perturbation theory (MBPT), and coupled-cluster* E-mail: so.hirata@pnl.gov.
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(CC) theory.16-19 Given a definition of a many-electron theory
as the quasi-vacuum expectation values of normal-ordered
second-quantized operators, TCE performs valid contractions
of creation and annihilation operators according to Wick’s
theorem, consolidates identical terms, and reduces the expres-
sions into the form of multiple tensor contractions acted upon
by permutation operators. TCE subsequently performs strength
reduction (determines the binary contraction order for each
multiple tensor contraction that has the minimal operation and
memory cost), factorization (eliminates common binary contrac-
tions and defines intermediate tensors), and common subex-
pression elimination (intermediate reuse). The resulting ordered
list (“operation tree”) of binary tensor contractions, additions,
and index permutations is translated into an optimized program
that is combined with a high-performance quantum chemistry
program package tailored to parallel computer environments.
The programs synthesized by TCE take advantage of spin,
spatial, and index permutation symmetries at every stage of the
calculations to reduce the operation cost and storage require-
ment, adjust the peak local memory usage by index-range tiling,
and support multiple parallel I/O interfaces and dynamic load
balancing for parallel executions.

In this article, we describe the machinery of TCE and discuss
the characteristics of the equations and intermediate quantities
of many-electron theories upon which TCE is based. To render
TCE widely applicable and to advance its program optimization
capabilities, we answer the following questions: (1) What are
the adequate representations of tensors, second-quantized opera-
tors, permutation operators, and so forth that permit rapid
pattern-matching operations? (2) What is the rational definition
of intermediate tensors that have desirable index permutation
symmetry? (3) How can we take advantage of spin, spatial, and
index permutation symmetries simultaneously to minimize the
number of arithmetic operations? (4) How can we adjust the
peak memory usage without significantly increasing the opera-
tion cost? (5) What is the universal storage scheme for tensors
compressed by the use of spin, spatial, and index permutation
symmetries? (6) How can we effectively parallelize the entire
calculation? We demonstrate the computer-aided implementation
of high-performance parallel programs for various models of
many-electron theories that include configuration-interaction
theory (CISD, CISDT, CISDTQ), many-body perturbation
theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster
theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and
CCSDTQ).

2. Machinery of Tensor Contraction Engine

2.1. Derivation of Working Equations. The vast majority
of modern many-electron theories for electron correlation
problems are defined in terms of the expectation values of the
nonrelativistic electronic Hamiltonian and other operators for
wave functions expanded by Slater determinants. The expecta-
tion values, in their simplest forms, are usually tensor algebraic
expressions in which the tensors represent certain physical
interactions.14 Therefore, the derivation of working equations
amounts to evaluating the expectation values of operators for
determinantal wave functions and reducing the resulting alge-
braic expressions into the simplest form of tensor contractions
and additions. This may be accomplished in various ways,16

but three widely used approaches are the one based on Slater’s
rules, the method of second quantization, and the diagrammatic
approach. TCE adopts the method of second quantization that
appears to blend the applicability and expediency in the most
adequate balance for the purpose of building a universal and
efficient symbolic manipulation program.

The process of evaluating operator expectation values with
second quantization can be significantly simplified and acceler-
ated by Wick’s theorem, which states that a string of creation
and annihilation operators is a sum of all possible partial
contractions of the string in the normal order. A normal-ordered
string of operators (enclosed by a pair of braces) relative to a
quasi-vacuum is defined as the rearrangement of the operators
such that all hole annihilation and particle creation operators
are to the left of all hole creation and particle annihilation
operators. The significance of Wick’s theorem is that the quasi-
vacuum expectation value of a normal-ordered string of opera-
tors vanishes unless it is fully contracted.

An initial task of TCE (an interpreted, interactive, object-
oriented program written in Python programming language) is
therefore to perform all valid contractions of second-quantized
operators, provided a definition of a many-electron theory model
is expressed in terms of quasi-vacuum expectation values of a
product of normal-ordered strings of operators, such as

which is a part of the CCSDT2 amplitude equation. Here,hn

denotes a hole index,pn denotes a particle index,gn denotes
either a hole or a particle index,Vg7g8

g5g6 represents an anti-
symmetrized two-electron integral,th15h16

p13p14 represents an excita-
tion amplitude, and the Einstein convention of implied sum-
mation is employed. A valid contraction is the one between a
hole creation and a hole annihilation operator and between a
particle annihilation and a particle creation operator across
different normal-ordered strings (i.e., excluding internal contrac-
tions). TCE performs this procedure iteratively, with each cycle
of iteration consisting of the following steps. First, TCE
performs all possible contractions of an operator. Because the
order of contraction is immaterial, TCE elects to contract the
leftmost operator with another operator. After a single contrac-
tion of the leftmost operator, eq 1 becomes

Even when a contraction gives rise to nonvanishing terms,
the inspection of the number of remaining creation and
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annihilation operators and their types in the strings can indicate
that they eventually lead to only vanishing contributions when
fully contracted. TCE identifies and erases partially contracted
strings that will vanish when fully contracted. It is critical to
erase them early to maintain the number of partially contracted
strings at a manageable level, which otherwise tends to grow
exponentially. In the above example (eq 2), the first two terms
vanish when fully contracted.

A contraction can often give rise to the equivalent terms
multiple times, which differs merely in the order of tensor parts
of operators (e.g., integrals and excitation amplitudes), the order
of permutable indices (e.g., indices of an integral matrix), or
the labels of common (summation) indices. A simple and
efficient way to consolidate these equivalent terms is to recast
the expressions in a canonical form3 so that the expressions of
the two equivalent terms become identical by character and are
rapidly merged. The definition of a canonical form is rather
arbitrary, and TCE adopts the following: the tensor parts of
the operators are in alphabetical order, then in the order of their
ranks, then in the order of labels of the indices that are not
among the common indices. All common indices are subse-
quently relabeled and sorted in a unique order. Equation 2 has
only two distinct nonvanishing terms and is hence rewritten in
the canonical form as

For an ansatz containing 2n second-quantized operators,n
cycles of an iterative contraction procedure lead to fully
contracted expressions

for the above example. They need to be further simplified by
virtue of the topological properties of the expressions akin to
those of corresponding diagrammatic representations. First, the
tensor contraction expressions that correspond to disconnected
diagrams may optionally be deleted. The connectedness of tensor
contraction expressions can be inferred straightforwardly by
chasing the tensor indices. In eq 4, the last term is disconnected
because the only contraction takes place between tensorV and
one of the two tensorst. Examining the connectedness may also
identify “cyclic” tensor contraction expressions, such as

whose corresponding diagram contains a closed loop formed
by more than two vertices. A cyclic tensor contraction typically
arises when deexcitation operators are employed in the ansatz.
The expressions of this type cannot be handled effectively by
the canonicalization technique. When TCE detects a cyclic
tensor contraction expression, it performs a more rigorous

comparison of two expressions by permuting the common
indices in all possible ways to examine whether the two are
equivalent.

Subsequently, TCE examines index permutation symmetries
among the tensor contraction expressions. When there are two
or more tensor contraction expressions that are related to each
other by index permutation, TCE consolidates them into one
tensor contraction expression acted upon by a sum of operators
that permute just the indices of output tensors (a permutation
of common indices merely gives rise to equivalent expressions).
Equation 4 (after the disconnected term is deleted) can thus be
simplified to

where permutation operators are also expressed in the tensor
notation (subscript particle indices of the permutation operator
are replaced by the corresponding superscript particle indices,
and superscript hole indices are replaced by the corresponding
subscript hole indices in the above equation). Occasionally, an
index permutation of output tensors acting upon a tensor
contraction expression results in an expression equivalent to the
original expression. This occurs when there are two or more
equivalent tensors in the expression (i.e., the tensors of the same
type and rank contracted in the same topological manner). In
this situation, TCE prefers to rewrite the expression in a more
symmetric form with a permutation operator, for reasons that
will become apparent. The final tensor contraction expressions
for eq 1 are

Note that the permutation operator of the last term of eq 6 is
symmetrized.

2.2. Generation of an Operation Tree.Although multiple
tensor contraction expressions, such as eq 7, may be imple-
mented for the purpose of verifying the expressions themselves,
they are premature for the synthesis of a high-performance
program. They must first undergo (1) the canonicalization of
permutation operator expressions, (2) the strength reduction
(which determines the order of contractions), (3) the canoni-
calization of binary tensor contraction expressions, (4) the
factorization, and (5) the common subexpression elimination
(intermediate reuse). The result of these processes is an operation
tree consisting of binary tensor contractions and additions.

The canonicalization of permutation operator expressions
serves the dual purposes of guiding the program generator to
invoke index permutation symmetry and facilitating the subse-
quent optimizations. The use of the index permutation symmetry
is crucial in a many-electron theory calculation because it
dramatically reduces both the storage and operation costs of a
tensor contraction and it also enhances the stability of the
calculation. Consider the following example taken from the
CCSDTT3 amplitude equation:
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By virtue of the index permutation symmetry of input and output
tensors

we may store just the nonredundant elements of each tensor,
which is equivalent to restricting the ranges of indices as
th7<h8<h3

p4<p5<p6, Vp1<p2

h7<h8, andøh1<h2<h3

p4<p5<p6. This not only reduces the storage
space (by a factor of ca. 36 for aT3 amplitude tensor) but also
ensures the antisymmetry of the wave function and prohibits
the calculation from erroneously converging to a nonphysical
symmetric or asymmetric wave function. The operation cost of
a tensor contraction can also be reduced by restricting the ranges
of the indices of the output tensor (the external indices) and
common indices. In eq 8, we can recover all of the nonredundant
elements of the output tensorøh1<h2<h3

p4<p5<p6 by performing the
contraction within the restricted ranges ofp4 < p5 < p6 andh1

< h2 and by subsequently applying the permutation operator to
the result. Likewise, we may vary the common indices within
the triangular range ofh7 < h8 and multiply the result by an
appropriate scalar factor to compensate for the reduction in the
index ranges. We may therefore rewrite eq 8 as

to highlight the use of index permutation symmetry (the
operation cost of this contraction is reduced by a factor of ca.
24). This can be transformed further into a more transparent
expression by rearranging the indices of the permutation
operators into a “canonical” form:

or equivalently

A canonical permutation operator maps the index ranges of the
tensor it acts upon back onto the original index ranges as it
permutes the indices. Consequently, as eq 14 illustrates, it is
not necessary to lift the restrictions on the index ranges ofê,
and hence it offers the most compact way of performing tensor
contractions with index permutation symmetry (see also section
2.3). This is contrasted with the noncanonical permutation
operators in eq 11, which entail partially extended intermediate
storage forê.

A permutation operator can be brought to a canonical form
by first rearranging the columns of indices in ascending order
of the origin indices (i.e., covariant (subscript) particle indices
and contravariant (superscript) hole indices in the above
example) and then by sorting the destination indices (i.e.,
contravariant (superscript) particle indices and covariant (sub-
script) hole indices) whose corresponding origin indices are in
a “permutable set.” A permutable set is a subset of the external
indices, any permutation of which leaves the tensor that the
permutation operator acts upon unchanged, apart from its parity.

In eq 11, the permutable sets are{p4, p5, p6} and{h1, h2}. The
canonical expression of a permutation operator is unique and
is hence a convenient representation for the subsequent strength
reduction, factorization, and common subexpression elimination
processes.

Strength reduction refers to the process of finding the order
of contractions in a multiple tensor contraction with the minimal
number of arithmetic operations. Owing to the associativity and
commutativity of a tensor contraction, the outcome of a multiple
tensor contraction is invariant to the contraction order, whereas
the operation cost can be strongly dependent on this parameter.
There are (m - 1)! distinct contraction orders of anm-fold
multiple-tensor contraction,20 and TCE determines the best order
by comparing the peak operation cost, then the peak memory
cost, then the aggregate operation cost, and then the aggregate
memory cost of all possible contraction orders. The operation
and memory cost are measured in terms of a polynomial of the
ranges of hole and particle indices, and it is assumed that the
range of a particle index is marginally greater than that of a
hole index. The strength reduction must also be applied to
permutation operators. An overall permutation operator of a
multiple tensor contraction can be expressed as a product of
component permutation operators in a number of ways. How-
ever, for a given contraction order, there is only one sensible
way of decomposing the associated overall permutation operator
that ensures that the intermediate tensors defined by the binary
tensor contractions acted upon by the component permutation
operators will have the desired index permutation symmetry.
For instance, a quadruple tensor contraction that appears in the
CCSDTT3 amplitude equation

can be executed stepwise as

The overall permutation operator (P9 in abbreviated notation)
is factorized such that intermediate tensors (ê andκ) become
antisymmetric to the interchange of any pair of contravariant
or covariant indices of the output tensorø (the external indices)
and to the interchange of any pair of the remaining contravariant
or covariant indices (the internal indices). The intermediate
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h8p4<p5 , for instance, has two contravariant external indices
{p4, p5}, one contravariant internal index{h8}, and three
covariant external indices{h1, h2, h3}, and its desired index
permutation symmetry isp4 < p5 and h1 < h2 < h3. The
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As this example illustrates, the appropriate form of a
component permutation operator is dictated by the form of the
binary tensor contraction. Therefore, TCE performs strength
reduction by generating component permutation operators on
the basis of the binary tensor contractions and subsequently
examining the compatibility between the component permutation
operators and the overall permutation operator. When the overall
permutation operator is not equal to the product of the
component permutation operators, TCE is unable to process the
equations any further. This might appear to be a limitation of
TCE, but this is not the case. Incompatibility occurs only when
the ansatz supplied to TCE intrinsically violates the antisym-
metry of wave functions and hence the mechanism prevents a
faulty ansatz from going undetected.

Judging the identity of two permutation operators deserves
caution. For example, apparently distinct permutation operators
Ph1h2h3p4p5p6

h1h2h3p5p6p4 and-Ph1h2h3p4p5p6

h1h2h3p6p5p4 are equivalent to each other in the
context of eq 16 becauseêh1<h2<h3

h8p4<p5 is antisymmetric to the
interchange ofp4 andp5. The canonicalization of permutation
operators expedites this judgment by bringing the expressions
of two equivalent permutation operators into an identical form.
The symmetrization of permutation operators mentioned in
section 2.1 also concerns this process. Because the products of
component permutation operators are symmetric with respect
to the interchange of two equivalent tensors, overall permutation
operators must be symmetrized beforehand.

Let us consider the following example of binary tensor
contractions and additions that result from the strength reduction
process:

Equation 19 is factorizable, and the two binary tensor contrac-
tions and an addition can be converted into a binary tensor
addition and a contraction by virtue of the distributive and
commutative nature of tensor algebra. However, in the above
representation of the tensor expressions, the factorizability is
inconspicuous, owing to the apparent mismatch of the indices
in the common tensors (th2h7

p5p6 and th3h7

p4p5 in the above equation).
The mismatch arises partially from the degrees of freedom in
representing a set of tensor contractions that are related to each
other by index permutation symmetry. Therefore, prior to
factorization, TCE canonicalizes binary tensor contraction
expressions so that the two tensors that are contracted are sorted
in a unique order and the external indices are in ascending order
across the two tensors (the corresponding permutation operator
is also re-expressed accordingly). Equations 19-21 are rewritten
as

in the canonical form that exposes the common tensors and lends
itself to rapid factorization. (It also manifests the common loop

indices and expedites loop fusion and space-time tradeoff
optimization,21 which are, however, beyond the scope of this
study.) TCE identifies every factorizable pair of binary tensor
contractions and replaces each of them by an addition and a
contraction, under the tacit assumption that the strength reduc-
tion and the factorization are decoupled. Finding an optimal
contraction sequence of a coupled strength reduction and
factorization problem involves an intractably large search space,
and the simple exhaustive search algorithm adopted here for
the decoupled problem will not be adequate, although an
effective approach to finding a near-optimal solution does seem
to exist (e.g., the recursive intermediate factorization scheme
of Kucharski and Bartlett).4 Nevertheless, the gain in perfor-
mance on going from an optimal sequence of the decoupled
problem to that of the coupled one will not be substantial (see
section 3).

TCE also supports the common subexpression elimination
that permits the precomputation and reuse of the results of
equivalent contractions (persistent intermediates as opposed to
volatile intermediates) of two input (nonintermediate) tensors
at the cost of increased storage space. This optimization, despite
its appeal, will not necessarily be invoked in the applications
discussed in this article because the reduction in the operation
cost by the optimization is relatively insignificant and is largely
canceled by increased memory and I/O operation cost in
practice.

Tables 1-3 are examples of operation trees generated by
TCE, which may be viewed as intermediate codes that describe
the operations, the order of execution, and the data dependencies.
Each operation that appears in the trees is either a unary tensor
substitution, a binary tensor contraction, or a tensor addition
by virtue of the strength reduction. Many of the volatile
intermediatesê are defined as a sum of tensors as a consequence
of the factorization, and the intermediates represented by¥ are
persistent intermediates that are reused several times. The order
of entries in the operation trees reflects the data flow. Internally,
TCE stores an operation tree as a data structure analogous to
that of a directed acyclic graph (DAG),22 each node of the tree
representing a binary tensor contraction or a unary tensor
substitution and an edge connecting two adjacent nodes corre-
sponding to a tensor addition. The leaf nodes of the tree are
binary tensor contractions or unary tensor substitutions of input
tensors or persistent intermediate tensors. The definition of the

øh1h2h3

p4p5p6 ) P9êh1h3

h7p4th2h7

p5p6 - 1
2
P9κh1h2

h7p6th3h7

p4p5 (19)

êh1h3

h7p4 ) P2th3h9

p4p8Vh1p8

h7h9 (20)

κh1h2

h7p6 ) th1h2

p8p9Vp8p9

h7p6 (21)

øh1h2h3

p4p5p6 ) -P9th1h7

p4p5êh2h3

h7p6 - 1
2
P9th1h7

p4p5κh2h3

h7p6

) -P9th1h7

p4p5(êh2h3

h7p6 + 1
2
κh2h3

h7p6) (22)

êh1h2

h7p4 ) -P2th1h9

p4p8Vh2p8

h7h9 (23)

κh1h2

h7p4 ) th1h2

p8p9Vp8p9

h7p4 (24)

TABLE 1: Operation Tree for the CCSD Energy Equation

(ê1)p5

h6 ) +f p5

h6 + 1
2
th4

p3Vp3p5

h4h6

e ) +th6

p5(ê1)p5

h6 + 1
4
th3h4

p1p2Vp1p2

h3h4

TABLE 2: Operation Tree for the CCSD T1 Amplitude
Equation

(¥1)p3

h7 ) -th6

p5Vp3p5

h6h7

(ê22)p3

h7 ) +f p3

h7 + (¥1)p3

h7

(ê2)h1

h7 ) +f h1

h7 + th1

p3(ê22)p3

h7 - th5

p4Vh1p4

h5h7 - 1
2
th1h5

p3p4Vp3p4

h5h7

(ê3)p3

p2 ) +f p3

p2 - th5

p4Vp3p4

h5p2

(ê5)p7

h8 ) +f p7

h8 + (¥1)p7

h8

(ê6)h1p3

h4h5 ) +Vh1p3

h4h5 - th1

p6Vp3p6

h4h5

rh1

p2 ) +f h1

p2 - th7

p2(ê2)h1

h7 + th1

p3(ê3)p3

p2 - th4

p3Vh1p3

h4p2 + th1h8

p2p7(ê5)p7

h8 -

1
2
th4h5

p2p3(ê6)h1p3

h4h5 - 1
2
th1h5

p3p4Vp3p4

h5p2
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persistent intermediate tensors is attached to the tree as an
auxiliary data structure.

2.3. Synthesis of a Computer Program.To minimize the
number of arithmetic operations and the amount of storage space
by the use of index permutation symmetry, we need to know
how an intermediate tensor transforms upon the permutation
of indices. There does not seem to be a simple answer to this
question in general situations, but under the conditions23 that
(1) there is no deexcitation amplitude tensor, (2) there is not
more than one integral tensor (a tensor that originates from the
Hamiltonian operator), (3) the strength reduction seeks an
operation minimal contraction sequence for an individual
multiple tensor contraction, and (4) an overall permutation
operator is factorized in the manner prescribed above, we can
write an intermediate tensor in the following general form:13

Here the indices of the intermediate tensor are categorized into
four disjointed sets (i.e., contravariant external indicese1

< ‚‚‚ < ea (the superscript indices that appear in the output
tensor of the multiple tensor contraction), covariant external
indices ea+1 < ‚‚‚ < eb, contravariant internal indicesi1
< ‚‚‚ < ic (the superscript indices that are not external indices),
and covariant internal indicesic+1 < ‚‚‚ < id), and any pair of
indices in each category is permutable. Input tensors (excitation
amplitude tensors, integral tensors, etc.) and output tensors can
also be cast in this form.

This general form of an intermediate tensor can be deduced
by examining the process of a binary tensor contraction that

takes place under the above listed conditions. The conditions
preclude any contraction except for that between an excitation
amplitude tensor and an integral tensor and that between an
excitation amplitude tensor and an intermediate tensor. Because
an integral tensor is encompassed by eq 25, we can confine
our analysis to the binary tensor contraction of the form

whereP is a sum of permutation operators that makes the tensor
it acts upon antisymmetric to the interchange of any pair of
contravariant or covariant external indices. Notice that the
common (summation) indices are among the internal indices
of the intermediate tensorê and that an index of the excitation
amplitude tensort is either a common index or an external index.
The contraction of eq 26 is performed in the following three
distinct steps. First, we “decompress” the tensors by lifting some
of the restrictions on the index ranges

such that the common indices can vary independently from the
other indices. The restricted ranges among the common indices,
however, merely give rise to a scalar factor of (d - c)!(f - e)!.
Second, we carry out the summation over the common indices
and obtain

Third, we “compress” the intermediateη by introducing the
restrictions on the index ranges with the aid of the permutation
operator

The intermediateη consequently recovers the general form of
intermediate tensors as expressed by eq 25.

In addition to the index permutation symmetry, we must also
take account of spin (within the spin-orbital formalisms) and
the real Abelian point-group symmetry of orbitals (i.e., tensor
indices) simultaneously to minimize the number of arithmetic
operations and storage space. This amounts to exploiting the
fact that the tensor elements are nonvanishing only when the
following conditions are satisfied:

where σg and Γg are the spin momentum and irreducible
representation, respectively, associated with tensor indexg.

TABLE 3: Operation Tree for the CCSD T2 Amplitude
Equation

(¥1)h1p9
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2
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2
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h9 ) +f p8

h9 + (¥4)p8

h9
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p6Vh1p6
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2
th1h8

p6p7Vp6p7

h8h9
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p6Vp5p6
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2
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p3p6Vp5p6

h7h8

(ê62)h1p8
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(ê6)h1h2
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p8(ê62)h2p8

h9h11 + (¥2)h1h2

h9h11

(ê7)h1p5

h6p3 ) +Vh1p5

h6p3 + 2(¥3)h1p5

h6p3 - 1
2
th1h8

p3p7Vp5p7

h6h8
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p3p4 - P2th10

p3 (ê2)h1h2

h10p4 - P2th1

p5(ê3)h2p5
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+ P2th1h2
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2
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p5p6Vp5p6

p3p4

êea+1<‚‚‚<eb,ic+1<‚‚‚<id

e1<‚‚‚<ea,i1<‚‚‚<ic (25)

Pêea+1<‚‚‚<eb,id+1<‚‚‚<ie<ce+1<‚‚‚<cf

e1<‚‚‚<ea,i1<‚‚‚<ic<cc+1<‚‚‚<cd teg+1<‚‚‚<eh<cc+1<‚‚‚<cd

eb+1<‚‚‚<eg<ce+1<‚‚‚<cf (26)
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contravariant
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∏
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covariant
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g

contravariant
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Executing conditionals 31 and 32 or imposing the index-range
restrictions element by element in the process of tensor
contraction is inefficient owing to the substantial overhead of
having IF statements in a performance-critical section (i.e.,
matrix multiplications and matrix sorts) of the calculation.
Alternatively, one might decompress tensors (cf. eqs 27 and
28) and rearrange their elements according to the spin and spatial
symmetry to expose a long uninterrupted sequence of arithmetic
operations. However, such an algorithm tends to require a large
memory space to accommodate the decompressed tensor that
contains many redundant elements. To overcome this algorith-
mic dilemma, we resort to index-range tiling (also called index-
range blocking) that partitions indices into tiles (blocks) with
each tile consisting of indices with the same hole or particle
type, spin symmetry, and spatial symmetry, and we exploit these
symmetries at the tile level (rather than at the element level).

For example, an excitation amplitude tensorth1<h2<h3

p4<p5<p6 is
stored asth1teh2teh3t

p4tep5tep6t where h1t (p4t),... is a group of hole
(particle) indices sharing the same spin and spatial symmetry
symbol. The range restrictions imposed on the tile indices to a
large extent minimize the storage space for the tensor by the
use of index permutation symmetry. Redundant elements occur
only within the “diagonal” tiles that are characterized by
equalities in the tile index-range restrictions. The proportion of
redundant elements diminishes as the tile size decreases, and it
vanishes in the extreme where each tile consists of just one
index. Conditionals 31 and 32 can be executed only once for
each tile to decide whether the tile is zero. Therefore, the tiling
allows the conditionals associated with spin, spatial, and index
permutation symmetry to be moved to outside of the performance-
critical section of the calculation, and it also permits these
conditionals to map the tiles of a tensor to their symmetrically
unique tiles and to retrieve (store) them directly from (to) storage
without explicitly decompressing (compressing) the tensor.
Furthermore, the tiling also exposes an adequate granularity of
parallelism (the tile-level matrix multiplications and matrix
element sorts can be performed in parallel) and offers a means

to control the peak memory usage by adjusting the tile sizes at
run time.

Figure 1 illustrates a program automatically synthesized by
TCE for tensor contractionøh1h2h3

p4p5p6 ) 1/2P3th1h2h3

p4p7p8Vp7p8

p5p6. The nested
outer loops (line 1) run over the tiles of tensorø with the tile
range restrictionsp5t e p6t andh1t e h2t e h3t. Although tensor
ø is stored with the full restrictions ofp4t e p5t e p6t andh1t e
h2t e h3t, we cannot imposep4t e p5t in the contraction stage
because-th1teh2teh3t

p5tp7tep8t Vp7tep8t

p4tep6t and th1teh2teh3t

p6tp7tep8t Vp7tep8t

p4tep5t as well as
th1teh2teh3t

p4tp7tep8t Vp7tep8t

p5tep6t contribute to øh1teh2teh3t

p4tep5tep6t by virtue of the
permutation operator. Immediately within the loops, we execute
a conditional of spin and spatial symmetry to know whether
the tile of tensorø has any nonvanishing element (line 2). When
the tile is nonzero, the operation enters the inner nested loops
over the common indicesp7t e p8t (line 3), which are followed
by a conditional (line 4) to test whether the tile of tensorV is
nonzero by spin and spatial symmetry (when the tiles ofø and
V are nonzero, the tile oft is also nonzero). At this stage, we
retrieve the tiles of tensorst andV from storage. Because the
loop indicesp4t, p7t, andp8t do not conform to the full tile index-
range restrictions of tensort, the tile associated with the loop
indices may not be located in storage. In that case, the
nonoverlapping conditionals in lines 5-7 map the tile to an
equivalent tile (apart from its parity) in storage. For tensorV,
the tile can be obtained directly from storage (line 9) because
the restrictions on the loop indicesp5t e p6t and p7t e p8t

coincide with those of the indices of tensorV in storage.
Subsequently, the arrays containing the tiles oft andV are sorted
(lines 8 and 10) such that the loop over a composite common
index has unit stride in the tile-level tensor contraction (matrix
multiplication) in line 13. The resulting tile of tensorø is
multiplied by an extra factor of 2 whenp7t < p8t to compensate
the bypassed common index ranges ofp7t > p8t (lines 11 and
12). Finally, the tile of tensorø is mapped to a symmetrically
unique tile and is added to storage (lines 14-16). Note that
this mapping corresponds to the reverse operation of the
canonicalized permutation and also that the conditionals (lines

Figure 1. Overview of a subroutine automatically generated by TCE for tensor contractionøh1h2h3

p4p5p6 ) 1/2P3th1h2h3

p4p7p8Vp7p8

p5p6. Sorted and unsorted tiles of
tensors are distinguished by primes.
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14-16) overlap with one another because the permutation
applies to diagonal tiles also.

The nested outer loops (line 1) are parallelized, and the
computational workload (the tile retrieval, tile-level tensor sorts
and contractions, and tile accumulation) is balanced between
processors by dynamical workload allocation. Therefore, each
processor performs asynchronously the workload dynamically
assigned to it within its local memory space that accommodates
the tiles of the tensors, and synchronization between processors
occurs only at the conclusion of the tensor contraction process
(line 21). Dynamical load balancing is essential because tile
sizes can be significantly different from one another and it is
hard to distribute the workload statically evenly across proces-
sors within the present algorithmic framework. Although they
are inconspicuous, interprocessor interactions exists in the tile
retrieval and accumulation processes as overlapping I/O opera-
tions to the tensor storage.

TCE generates subroutines (Figure 1) for unary tensor
substitution and binary tensor contraction and also caller
subroutines (Figure 2). We have interfaced these subroutines
with the computational chemistry program suite UTCHEM24

(in Fortran90) for sequential executions and with NWCHEM25

(in Fortran77) for sequential and parallel executions on the basis
of the following parallel I/O schemes: (1) a shared file algorithm
based on a global file system using the shared file library,26 (2)
a replicated file algorithm based on a distributed or global file
system using the exclusive access file library,26 and (3) an incore
algorithm using the global array library.26 In the shared file
algorithm, each tensor is stored in a file on a global file system
accessed by all processors, whereas in the replicated algorithm
each processor has its own copy of a file and updates the copy
asynchronously. In the latter algorithm, the copies of the file
must be reconciled at the end of tensor contraction so that each
copy contains a complete intermediate tensor. In the incore
algorithm, a global memory space residing across all computer
nodes is employed in lieu of a file system, and hence I/O
operations are replaced by interprocessor communications.

Tensors are stored as a 1D array of symmetrically unique
tiles, and the elements of each tile are stored consecutively. The
positions (offsets) of the tiles in the storage are precomputed
and stored in memory for each intermediate tensor by a
subroutine generated by TCE. Figure 2 illustrates a sequence
of operations for evaluating the CCSD energy equation (Table
1). In lines 1-3, the program precomputes the offsets, size, and
name of a file that reserves the storage space for intermediate
ê1. Subsequently, it issues subroutine calls for unary tensor
substitution (ê1)p5

h6 ) f p5

h6 (line 4) (f p5

h6 denotes a Fock matrix
element) and binary tensor contraction (ê1)p5

h6 ) (ê1)p5

h6 +
1/2th4

p3Vp3p5

h4h6 (line 5). When a replicated file algorithm is em-
ployed, tensorê1, written in fragment in exclusive access files,
is consolidated into a complete tensor, which is then broadcast
to each processor (line 6). Tensorê1 is used as one of the input

tensors in the subsequent tensor contractione ) th6

p5(ê1)p5

h6 (line
7) and is destroyed immediately after its use (line 8).

3. Applications of the Tensor Contraction Engine

As an initial application, we have employed TCE to derive
the equations of various models of CI, CC, MBPT automatically
and implement them into parallel computer programs within
the computational chemistry program suites of NWCHEM25 and
UTCHEM.24 The models that have been implemented were spin-
unrestricted CISD, CISDT, and CISDTQ, spin-unrestricted
CCD, LCCD, CCSD, LCCSD, QCISD, CCSDT, and CCSDTQ,
and noncanonical spin-unrestricted MBPT(2), MBPT(3), and
MBPT(4). For details of these models, see refs 17-19.

The ansatz of CI theory (e.g., that of configuration-interaction
single, double, and triple substitutions (CISDT)) may be given
as

whereQn is a projection operator onto the manifold ofn-tuply
substituted determinants from the reference wave function,Cn

is an n-fold excitation operator,HN is the normal-ordered
Hamiltonian operator, andE is the correlation energy. Equation
34 can be expressed in an explicit normal-ordered second-
quantized form as

Equations such as this can be parsed and processed by TCE,
which subsequently synthesizes parallel computer programs. The
synthesized programs can then be compiled and executed

Figure 2. Caller subroutine for the CCSD energy equation generated by TCE.

C ) C1 + C2 + C3 (33)

E ) Q0HN(1 + C)Q0 (34)

0 ) Q1HN(1 + C)Q0 - EQ1CQ0 (35)

0 ) Q2HN(1 + C)Q0 - EQ2CQ0 (36)

0 ) Q3HN(1 + C)Q0 - EQ3CQ0 (37)

E ) +f g2
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†h4}|0〉

+ 1
4

Vg3g4
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p5〈0|{g1
†g2

†g4g3}{p5
†h6}|0〉

+ 1
4
f g2

g1ch5h6

p3p4〈0|{g1
†g2}{p3

†p4
†h6h5}|0〉

+ 1
16

Vg3g4

g1g2 ch7h8

p5p6〈0|{g1
†g2

†g4g3}{p5
†p6

†h8h7}|0〉

+ 1
36

f g2

g1ch6h7h8

p3p4p5〈0|{g1
†g2}{p3

†p4
†p5

†h8h7h6}|0〉

+ 1
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Vg3g4

g1g2ch8h9h10

p5p6p7 〈0|{g1
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(38)
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without any manual modification once appropriate interface
programs to a computational chemistry program package are
in place.

The ansatz of CC theory such as the following (coupled-
cluster singles and doubles or CCSD)

can be processed in the same manner by TCE except that
immediately after the contraction step disconnected terms need
to be eliminated ([‚‚‚]C means that all terms in the second-
quantized form ofHN and T must be connected by common
indices, andTn is ann-fold excitation operator). The operation
trees obtained from the CCSD ansatz are shown in Tables 1-3.

In this article, we confine ourselves to “noncanonical” or
“generalized” MBPT that is invariant to unitary transformations
within the just-occupied and just-virtual spaces without resorting
to Wigner’s 2n + 1 rule. Noncanonical MBPT in its tensor
formulation is considered to be the most fundamental repre-
sentation of the theory27 and is essential for linear scaling
algorithms using local molecular orbitals.14 As usual, we
partition the Hamiltonian operator as a sum of the Fock operator
F and the fluctuation potentialV and apply Rayleigh-Schrö-
dinger perturbation theory. Hence, the ansatz of second-order
many-body perturbation theory [MBPT(2)] is

whereT1 andT2 are the first-order single- and double-excitation
operators, respectively. When evaluated by TCE, this ansatz
leads to a tensor formulation of MBPT(2) (see also ref 14) that
reads

which may be solved iteratively. It may be noticed that because
a Hartree-Fock (HF) reference wave function satisfies the
Brillouin theorem (f h3

p1 ) f p2

h4 ) 0) T1 is zero. Employing this
fact, we can write the ansatz of MBPT(3) as

where U1 and U2 are the second-order single- and double-
excitation operators. Provided this ansatz, TCE generates the
following coupled equations:

The unrestricted CI and CC models can in principle take any
reference wave function such as a restricted HF (RHF), an
unrestricted HF (UHF), a restricted open-shell HF (ROHF), and
a restricted/unrestricted Kohn-Sham wave function, whereas
the unrestricted MBPT models are based either on an RHF or
a UHF reference wave function. When an RHF wave function
is used as a reference of a closed-shell system, the programs
generated by TCE mapâ orbitals to theR orbitals having the
same spatial part and avoid any redundant computation and
storage associated with the all-â spin-components of tensors.
For example, among the three independent spin-components of
the T2 tensor,tRR

RR, tRâ
Râ, andtââ

ââ, the CCD program generated by
TCE processes and stores only thetRR

RR andtRâ
Râ spin components

for an RHF reference. (However, this must be distinguished
from spin-adapted CCD, which deals with just thetRâ

Râ spin
components.) The coupled equations of the CI, CC, and MBPT
models are solved iteratively by a common driver subroutine
that updates excitation amplitude tensors by a combination of
the Jacobi iteration and the DIIS (direct inversion in the iterative
subspace) extrapolation.

It may be instructive to compare the theoretical operation
counts of the CCSD program automatically generated by TCE
with an equivalent program hand-coded by a group of experts
in the field. According to Stanton et al.,28 the number of
arithmetic operations of their unrestricted CCSD program is
approximately (5/4)O2V4 + 20O3V3 + (5/2)O4V2 in the leading
order, whereO ≈ OR ≈ Oâ is the number ofR- or â-spin
occupied orbitals andV ≈ VR ≈ Vâ is the number ofR- or â-spin
virtual orbitals. The operation count of the TCE-generated
CCSD code (Table 3) is approximately (5/4)O2V4 + (45/2)O3V3

+ (25/2)O4V2. The prefactors of theO2V4 andO3V3 terms, which
usually dominate the operation count becauseV . O in most
CCSD applications, are the same or only slightly greater in the
TCE-generated program than in the program of Stanton et al.
Therefore, the TCE-generated CCSD program can compete with,
albeit not outperform, the equivalent, carefully hand-coded
program. The greater operation count of the former than that
of the latter is caused by the decoupling of the strength reduction
and factorization processes in TCE.

Table 4 compares the CPU time for a single CC iteration
performed on a Hewlett-Packard Longs Peak Linux cluster
consisting of Intel Itanium-2 1-GHz dual processors. A com-
parison of the first two rows of the Table attests to the
tremendous speedup of the CCSDT calculation brought about
by the use of point-group symmetry. The speedup that is actually
observed usually does not exceed 70% of the theoretical
maximum speedup ofh2, with h being the order of the point

T ) T1 + T2 (39)

E ) Q0[HN(1 + T + 1
2!

T2)]C
Q0 (40)
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group,28 primarily because the partitioning of orbitals according
to irreducible representations is irregular. We consider the
speedup achieved by the TCE-generated program to be satisfac-
tory.

Stanton et al.28 also pointed out that point-group symmetry
naturally subdivides a tensor contraction (matrix multiplication)
into h independent operations that can be performed in parallel,
although they did not actually parallelize their CCSD program.
This is realized in the TCE-generated programs by virtue of
the tiling algorithm and the dynamic load balancing scheme.
The tiles can either coincide with symmetry blocks of orbitals
or subdivide them and are therefore adjustable to available
memory resources. The tile-level matrix multiplications and
matrix sorts are performed in parallel within the local memory
space of each processor with vectorized kernels (the DGEMM
subroutine of the BLAS library). Although parallel performance
falls off gradually as the number of processors increases, both
the global array and replicated algorithms exhibit reasonable
scalability for methylene. Expectedly, the replicated algorithm
sustains slightly better parallel performance than the global array
algorithm, owing to the greater communication overhead in the
latter. The global array algorithm, however, is expected to be
scalable with respect to problem size, but the replicated
algorithm is not. If the fall off were primarily a consequence of
small serial components within the CC iteration, then the
scalability would improve for a more time-consuming calcula-
tion because the calculation would have an increased proportion
of parallel components. The fact that the scalability does not
improve for the azulene or pyrrole radical cation may therefore
indicate that the overhead arising from the overlapping I/O
operations is not negligible or the dynamical setting for the
workload balancing is not entirely successful in decomposing
the parallel portion of the problem evenly. It is not known at
this moment whether stagnant scalability is inherent to many-
electron theories that suffer from complex data dependency or
if it can be overcome by an alternative parallel strategy that
also maintains the universal applicability of TCE.

The results of the applications of the electron correlation
methods implemented by TCE to the problem of the singlet-
triplet separation of methylene are available in the Supporting
Information.

4. Concluding Remarks

This article has described the symbolic manipulation program
TCE that enables automatic derivation and program synthesis
for general many-electron theories and has demonstrated its
utility through its applications to the core theories (CI, CC,
MBPT) of quantum chemistry.

The questions raised in the Introduction are answered as
follows: (1) The canonicalization of expressions performed at
various stages of the symbolic manipulation process ensures
rapid pattern matching. (2, 5) Under certain conditions imposed
on the ansatz of many-electron theories, we can assume that an

intermediate tensor has two disjoint permutable sets of covariant
indices and two disjoint permutable sets of contravariant indices.
(3-6) The index-range tiling algorithm achieves the best
compromise between the conflicting demand from the minimi-
zation of the number of arithmetic operations and the minimiza-
tion of the memory requirement. It moves the conditionals to
exploit spin, spatial, and index permutation symmetries to the
suburb of the performance-critical section of the calculation
without necessitating large temporary memory space to accom-
modate decompressed tensors. It also exposes an adequate
granularity of parallelism and offers a means to control the peak
memory usage by adjusting the tile sizes.

Despite its proven practical usefulness, the TCE program
presented here is an initial prototype, and its capabilities are
currently being actively enhanced in a multi-disciplinary, multi-
institution project that involves quantum chemists and computer
scientists. A list of enhancements that are being considered for
TCE’s program generator includes storage-space minimization
via the loop fusion and space-time tradeoff techniques21 and
the development of a universal interface to various quantum
chemistry software packages. Needless to say, TCE offers an
expedient, exact, and perhaps even pedagogical means to derive
and implement existing and new models of many-electron
theories for the accurate theoretical treatment of electronic,
magnetic, mechanical, and spectroscopic properties of atomic
and molecular systems, which may include but are not limited
to equation-of-motion CC and MBPT for excited states,
relativistic correlation theories, analytical energy derivatives,
combined CC and MBPT such as CCSD(T), and multireference
CI, CC, and MBPT.

Acknowledgment. I thank the members of the TCE projects
Professor Robert J. Harrison, Professor Marcel Nooijen, Dr.
Alexander A. Auer, Dr. David E. Bernholdt, Dr. Venkatesh
Choppella, Professor P. Sadayappan, Professor Gerald Baum-
gartner, Dr. Daniel Cociorva, Professor Russell Pitzer, and
Professor J. Ramanujamsfor valuable suggestions and encour-
agements throughout the study. I am indebted to Dr. Jarek
Nieplocha and Dr. Theresa L. Windus for insightful discussions
on the parallel I/O strategies, Dr. Takeshi Yanai and Professor
Kimihiko Hirao for generously providing the UTCHEM pro-
gram system, Dr. Michel Dupuis for a critical reading of the
manuscript prior to publication, and Professor Rodney J. Bartlett
for introducing me to advanced second-quantization techniques
and diagrammatics for many-electron theories and many useful
suggestions on the manuscript. This work has been funded by
the U.S. Department of Energy, Office of Basic Energy Science
and Office of Biological and Environmental Research, Office
of Science under contract DE-AC06-76RLO 1830 with Battelle
Memorial Institute. This work used the Molecular Science
Computing Facility in the William R. Wiley Environmental
Molecular Sciences Laboratory, Pacific Northwest National
Laboratory, which has been supported by the Office of Biologi-
cal and Environmental Research.

TABLE 4: CPU Time (min) for a Single Coupled-Cluster Iteration on 1, 2, 4, 8, and 16 Intel Itanium-2 1-GHz Dual Processors
of a Hewlett-Packard Longs Peak Linux Cluster

number of processors

molecule symmetry theory I/O 1 2 4 8 16

CH2 C1 CCSDT/cc-pVTZ global array 6.9 3.7 2.0 1.5 1.1
CH2 C2V CCSDT/cc-pVTZ global array 1.6 0.63 0.37 0.24 0.17
CH2 C2V CCSDT/cc-pVTZ replicated 1.6 0.68 0.35 0.20 0.13
C10H8

+ a C2V CCSD/cc-pVDZ replicated 7.2 4.2 2.6 2.1 1.7
NC4H5

+ b C2V CCSDT/cc-pVDZ replicated 550 320 190 140 110

a The azulene radical cation.b The pyrrole radical cation.
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